Degradation processes of polydimethylsiloxane under thermal cracking conditions of hydrocarbons in an experimental pilot plant followed by size exclusion chromatography coupled to inductively coupled plasma high resolution mass spectrometry

ty10086 提交于 周四, 08/26/2021 - 13:37
Abstract(#br)In the oil and gas industry, silicon coming from antifoaming agents, is recognized to be an emergent contaminant for hydrotreatment catalyst due to its negative effect on their performance. Using a pilot plant, representative samples of the thermal degradation of antifoaming agent such as polydimethylsiloxanes (PDMS) were produced under evaluated thermal cracking of hydrocarbons with the presence or absence of steam. Micro size exclusion chromatography hyphenated to inductively coupled plasma high resolution mass spectrometry was used to characterize these samples.

基于PDMS的静电驱动MEMS悬臂梁的设计与制作

ty10086 提交于 周三, 08/25/2021 - 17:22
聚合物微机电系统( MEMS )器件作为生物传感应用的新型传感器器件,具有较高的机械变形能力和灵敏度。本工作介绍了柔性PDMS衬底上静电驱动聚二甲基硅氧烷( PDMS ) MEMS悬臂梁的设计与制作。利用Taguchi方法结合COMSOL Multiphysics软件对悬臂梁的物理参数进行了分析和优化。本工作致力于开发一种简单、低成本的PDMS悬臂梁及其阵列制作工艺的新方法。该装置由金属底电极、PDMS锚头和PDMS悬臂梁作为顶电极和固定表面的PDMS本体组成。所呈现的工作是在PDMS衬底上溅射的金属层中出现开裂现象。制作工艺的新颖之处在于采用了低成本的工艺,无需精密的光刻工具或刻蚀设备。同时,该工艺允许使用替代材料作为基底(玻璃、硅片等),其中不消耗,可重复使用。然后,该器件的拉入特性使其具有电学特性。

溅射硅固相微萃取纤维与聚二甲基硅氧烷固定相,可忽略携带和相流

ty10086 提交于 周三, 08/25/2021 - 17:05
我们报道了高性能、溅射、聚二甲基硅氧烷( PDMS )包复的固相微萃取( SPME )纤维的制备,这些纤维表现出微不足道的携带和相流。这一过程包括将硅溅射到二氧化硅纤维上,并利用蒸气沉积PDMS超薄膜对所得到的多孔纳米结构进行功能化。制备了不同厚度的硅( 0.25,0.8,1.8   µ m )和PDMS ( 8,16,36   nm ),并对其萃取效率进行了评价。通过战斗时间二次离子质谱( ToF-SIMS )、X射线光电子能谱( XPS )、光谱椭偏仪( SE )以及模型、平面硅衬底上接触角测角等方法证实PDMS的沉积。采用直接浸泡SPME结合气相色谱-质谱联用( GC-MS )分析一系列致癌污染物多环芳烃( PAHs )对这些纤维进行了考察。PDMS ( Si ( 1.8   µ m ) / PDMS ( 16   nm )为16   nm的1.8   µ m厚硅涂层在试验组合中产生的响应最好。对该纤维提取PAHs的条件进行了优化,并与商用7 μm PDMS纤维的提取性能进行了比较。测定了溅射纤维的线性( 1 ~ 110   µ gL-1 )、重复性( RSD %,n   =  3 ) ( 17 % ave . )和最低检测限( 0.6 ~ 1.5   µ gL-1 ),发现许多方面优于市售7   µ m PDMS纤维。

通过紫外光引发聚邻苯二酚胺的聚合,可以在生物安全柜内实现片上器官的生产

ty10086 提交于 周三, 08/25/2021 - 16:57
用于制作片上器官( OOC )应用的微流控芯片的表面修饰往往是一个耗时的过程,涉及芯片清洗、紫外( UV )曝光、蒸汽灭菌等。本文报道了一种简单、快速、经济的方法,利用标准生物安全柜内的紫外光,在微流控芯片上一步实现儿茶酚胺材料的光引发聚合和图形化。聚二甲基硅氧烷( PDMS )微流控器件中填充多巴胺和去甲肾上腺素单体,然后在紫外光照射下引发材料的聚合,为OOC的应用创造了一个高度可行的表面。我们考察了这些紫外光引发的表面涂层用于制造3种不同的OOCs的性能,微流控芯片通过3种不同的方式进行键合和修饰:1 )常规的氧等离子体键合微流控芯片填充单体溶液,然后暴露在紫外光下对表面进行修饰(等离子体键合,聚合物包复);2 )流体层和玻璃基底均暴露在紫外光下对功能层进行包复,同时允许黏合蛋白将这2块结合在一起(紫外光键合,聚合物包复);3 )通过掩膜将紫外光投射到聚二甲基硅氧烷( PDMS )基底上,形成流体壁微流控通道(投影包复)。3种技术中在紫外光照射聚合物涂层表面接种的Cath . a . differential ( CAD )细胞表现出明显的高细胞活力、细胞黏附、增殖、基因表达,与未涂层PDMS相比保留了功能性。UV引发的表面改性技术使用了一种极简的方法,使用较少的设备和现有的基础设施,如生物安全柜,来创建一个功能性的OOC。

聚二甲基硅氧烷以外:制造A芯片器官装置和微生理系统的替代材料。

ty10086 提交于 周三, 08/25/2021 - 15:36
聚二甲基硅氧烷( PDMS )具有使用方便、弹性好、光学透明、微加工成本低等优点,是用于芯片上器官设备和微生理系统的主要材料。然而,PDMS对小分子疏水分子的吸附以及PDMS负载器件的高通量制造能力有限,严重限制了这些系统在个性化医学、药物发现、体外药动学/药效学( PK / PD )建模以及细胞对药物反应研究中的应用。因此,相对年轻的片上器官设备和MPS领域正逐步开始为这些关键应用过渡到替代的非吸收材料。本综述审查了在开发由弹性体、水凝胶、热塑性聚合物和无机材料等替代材料组成的片上器官装置和MPS方面所采取的一些第一步。同时也提供了PDMS-交替器件走向何处以及基于PDMS替代材料的多功能器件发展中必须克服的障碍的展望。