成纤维细胞

Enzyme-coated microelectrodes to monitor lactate production in a nanoliter microfluidic cell culture device

ty10086 提交于 周四, 08/26/2021 - 13:43
Abstract(#br)Monitoring the degree of anaerobic respiration of cells in high density microscale culture systems is an enabling key technology and essential for cell-based biosensors. We have fabricated and incorporated miniature amperometric lactate sensing electrodes with working areas from 3 to 5\u003cce:hsp sp=\"0.25\"/\u003e×\u003cce:hsp sp=\"0.25\"/\u003e10 −2 \u003cce:hsp sp=\"0.25\"/\u003emm 2 into a microfluidic-based microscale cell culture system to measure the lactate production rate of fibroblasts in nanoliter volumes.

Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces

ty10086 提交于 周四, 08/26/2021 - 13:05
Mammalian cells regulate adhesion by expressing and regulating a diverse array of cell adhesion molecules on their cell surfaces. Since different cell types express distinct sets of cell adhesion molecules, substrate-specific adhesion is cell type- and condition-dependent. Single-cell force spectroscopy is used to quantify the contribution of cell adhesion molecules to adhesion of cells to specific substrates at both the cell and single molecule level. However, the low throughput of single-cell adhesion experiments greatly limits the number of substrates that can be examined.

Effect of Substrate Stiffness on Physicochemical Properties of Normal and Fibrotic Lung Fibroblasts.

ty10086 提交于 周四, 08/26/2021 - 12:42
The presented research aims to verify whether physicochemical properties of lung fibroblasts, modified by substrate stiffness, can be used to discriminate between normal and fibrotic cells from idiopathic pulmonary fibrosis (IPF). The impact of polydimethylsiloxane (PDMS) substrate stiffness on the physicochemical properties of normal (LL24) and IPF-derived lung fibroblasts (LL97A) was examined in detail. The growth and elasticity of cells were assessed using fluorescence microscopy and atomic force microscopy working in force spectroscopy mode, respectively.

材料在组织再生中促进血管生成的作用

ty10086 提交于 周三, 08/25/2021 - 16:55
促进血管生成对于组织修复治疗的成功和组织工程结构的命运至关重要。尽管许多生化信号分子已经被使用,但已知其在体内的生物学功能有限,主要是由于其寿命短,活性差。除了生化信号之外,基质(或工程生物材料)在刺激血管生成过程中起着关键作用。在这里,我们讨论了修复和再生各种组织,包括皮肤、骨、肌肉和神经所采取的促血管生成的努力,重点讨论了工程基质的作用。这包括孔结构和理化性质的设计(纳米拓扑、刚度、化学和可降解性)、基质的剪裁以恰当地呈现生长因子及其与黏附配体的串扰、血管生成分子和金属离子的控制和持续传递、细胞工程和预血管化组织的构建等。总体而言,材料驱动的策略是调整细胞和组织微环境,通过基质线索和适当呈现或传递信号分子和细胞,血管生成事件可以得到明显的青睐。

标签

基质硬度对正常和成纤维细胞理化性质的影响

ty10086 提交于 周三, 08/25/2021 - 16:48
本研究旨在验证经基质刚度修饰的肺成纤维细胞的理化性质能否用于鉴别正常细胞和纤维化细胞与特发性肺纤维化( IPF )。详细考察了聚二甲基硅氧烷( PDMS )基底刚度对正常( LL24 )和IPF来源肺成纤维细胞( LL97A )理化性质的影响。分别采用荧光显微镜和原子力显微镜在力谱模式下工作,评估细胞的生长和弹性。成纤维细胞的数量,以及它们的形状和排列方式,强烈地取决于基底的机械性能。此外,正常成纤维细胞与纤维化成纤维细胞相比仍较僵硬,这可能表明IPF来源的成纤维细胞在纤维化过程中受到损伤。利用飞行时间二次离子质谱考察正常和IPF来源的肺成纤维细胞的化学性质,并用主成分分析法( PCA )进行复杂分析,显示胆固醇和磷脂的分布存在显著差异。根据观察到的健康细胞和纤维化细胞的区别,细胞的力学特性可作为前瞻性的诊断生物标志物,以便快速可靠地鉴别特发性肺纤维化( IPF )。