吸附

纳米粒子在聚二甲基硅氧烷基微通道上吸附的表征。

ty10086 提交于 周三, 08/25/2021 - 15:54
纳米粒子( NPs )被用于各种医药应用。外泌体( Exosomes )是一种生物衍生的纳米颗粒,是通过从体液中分离和浓缩而获得的生物标志物。基于聚二甲基硅氧烷( PDMS )的微通道具有高透气性和低细胞毒性等优点,适合于纳米颗粒的精细处理。然而,纳米颗粒的大比表面积可能导致非特异性吸附在器件基底上,从而造成样品的损失。因此,了解NP在微通道上的吸附情况对用于NP处理的微流控器件的运行至关重要。本文利用原子力显微镜对NP在PDMS基片和微通道上的吸附行为进行了表征,并将NP的吸附行为与NP的静电作用和分散介质性质联系起来。当聚苯乙烯NP分散体以恒定的流速引入PDMS基微通道时,随着NP和微通道zeta电位的降低(即随着pH的升高),吸附的纳米颗粒数量减少,表明微通道与纳米颗粒之间的静电作用增强了它们的斥力。在恒定流速下,将exosome分散体引入不同润湿性的PDMS微通道中,exosome的吸附以静电作用为主。所得结果将有助于PDMS基微流控装置对纳米颗粒的预富集、分离和传感。

壳聚糖-赖氨酸表面活性剂的生物活性功能纳米层,具有单、混合蛋白拒染和抗生物膜特性,用于医用植入剂。

ty10086 提交于 周三, 08/25/2021 - 15:50
由非特异性蛋白吸附引发的生物膜形成导致的医学植入物相关感染是植入物失效的流行原因。然而,多功能生物活性纳米涂层所呈现的植入表面为防止细菌的初始附着和有效阻断生物膜的形成提供了很有前景的替代方法。研究和开发新型、稳定的医用植入物生物活性纳米涂层,全面了解其与复杂生物环境接触的性能至关重要。本研究开发了一种由可再生阳离子多糖壳聚糖、赖氨酸基阴离子表面活性剂( 77KS )和两性抗生素阿莫西林组成的水稳定无交联剂聚电解质-表面活性剂复合物( PESC ),该复合物被广泛用于治疗多种细菌感染。我们在动态和环境条件下成功地在‘模型’和‘真实’聚二甲基硅氧烷( PDMS )表面引入了PESC作为生物活性功能纳米层。这些混合电荷均匀沉积的纳米层(厚度44 ~ 61 nm )除了具有较高的稳定性和良好的润湿性外,对3种模型血清蛋白(血清白蛋白、纤维蛋白原和γ-球蛋白)以及它们在混合物中的竞争相互作用具有很强的排斥作用,采用石英晶体耗散微天平( QCM-D )对其进行了表征。具有最大负zeta电位( p H 7.4时ζ:-19 ~ -30 m V )、含水量( 1628 ~ 1810 ng cm-2 )和水化(低黏度和弹性模量)的功能纳米层与蛋白质的质量、构象和相互作用性质有关。

创造多糖-蛋白质复合物来控制水润滑

ty10086 提交于 周三, 08/25/2021 - 15:47
对唾液和滑膜液等天然生物润滑剂的新认识表明,它们依赖于水介质中生物大分子之间的协同作用,其中一种高分子组分促进对生物基质的吸附,另一种则促进水合润滑。我们假设这种现象可以通过结合蛋白质的强吸附特性和多糖的水化作用来实现。为了证实这一假说,从车前草籽胶中提取的果胶多糖中,带正电的溶菌酶分子与阴离子残基通过静电作用形成水合可溶性复合物。采用球盘式摩擦仪测量光滑疏水聚二甲基硅氧烷( PDMS )表面之间的边界摩擦,采用石英晶体微天平结合耗散监测技术和椭偏仪评估吸附。结果表明,多糖与蛋白质的络合作用提高了疏水PDMS表面的吸附,进而降低了滑动接触时的边界摩擦。通过对比配合物和各组分的吸附行为,我们得出结论:多聚物保持了膜的水合,而溶菌酶提高了膜的表面吸附,从而为利用物理配合物设计双功能表面层提供了新的证据。我们的研究结果为在食品和口腔保健品中的应用开辟了一系列的机会,特别是在利用食品相容性成分控制水润滑方面。