3D打印

Fabrication of Polydimethylsiloxane films with special surface wettability by 3D printing

ty10086 提交于 周四, 08/26/2021 - 13:22
Abstract(#br)Special wettability of biological surfaces usually depends on the unique micro-structures and surface chemistry natures. However, current preparation methods often involve complex processing steps or expensive moulds and have the limited ability to simulate these ordered and elaborate micro-structures. Herein, we report a facile and mould-free approach to fabricate special wetting surfaces by patterning an ordered porous structure with various geometric parameters via one-step 3D printing of Polydimethylsiloxane (PDMS) ink.

由冰工程化的游离层次血管结构

ty10086 提交于 周四, 08/26/2021 - 13:14
Abstract(#br)The ability to engineer a synthetic hierarchical vascular network is one of the most demanding and unaddressed challenges in tissue engineering and regenerative medicine. A material that is both structurally rigid and biocompatible is needed to fabricate freestanding hierarchical vascular structures with defined dimensions and geometry. This is particularly important for creating commercially viable and easily suturable synthetic vasculature. Here, we present the surprising discovery that ice is a versatile material which satisfies these requirements.

低熔点金属基柔性三维生物医学微电极阵列采用相变法

ty10086 提交于 周四, 08/26/2021 - 13:13
Abstract(#br)In this study, we present a dimension-controllable 3D biomedical microelectrode based on low melting point metals (Bi/In/Sn/Zn alloy) applied using the phase transition method. We have established a process, in which the liquid metal is pumped through a syringe needle of the dispensing system to form a needle shape after cooling at room temperature. PDMS (polydimethylsiloxane) was chosen as the substrate of the electrode as it is amenable to micro-molding and has excellent flexibility.

增强体弯曲对互穿相复合材料弹性性能的影响

ty10086 提交于 周四, 08/26/2021 - 13:12
摘要\n通过一个考虑增强相弯曲变形的理论模型分析了互穿相复合材料( IPCs )的弹性模量。通过文献数据以及嵌入聚二甲基硅氧烷( PDMS )基体的3D打印聚合物增强体构建IPCs的模拟和实验结果对模型进行了验证。增强体呈Octet Truss和Kelvin Cell格子形式,已知其在弹性变形时表现出非常不同程度的弯曲。当基体模量较低时,模型能够解释钢筋支柱的弯曲是如何导致整体IPC模量远低于其他理论模型预测的。当基体模量增加到增强材料的20 %以上时,不同的晶格设计对IPC模量没有显著影响。基体模量的进一步增加将压杆的弹性响应推向等应变极限,因为基体有助于更均匀地分配载荷,抑制压杆的弯曲,特别是对于低密度点阵。该模型能够考虑广泛的不同组成模量,也适用于采用随机泡沫加固的IPCs。本研究得出的见解有望对设计增强体和基体弹性模量相差几个数量级的聚合物基IPCs特别有用。

Evaluation of 3D Printed Soft Robots in Radiation Environments and Comparison With Molded Counterparts

ty10086 提交于 周四, 08/26/2021 - 13:04
Robots have an important role during inspection, clean-up, and sample collection in unstructured radiation environments inaccessible to humans. The advantages of soft robots, such as body morphing, high compliance, and energy absorption during impact, make them suitable for operating under extreme conditions. Despite their promise, the usefulness of soft robots under a radiation environment has yet to be assessed. In this work, we evaluate the effectiveness of soft robots fabricated from polydimethylsiloxane (PDMS), a common fabrication material, under radiation for the first time.

聚二甲基硅氧烷流体芯片的制备采用熔融沉积建模3D打印制作牺牲模板并应用于流动注射分析,原创论文

ty10086 提交于 周四, 08/26/2021 - 13:01
采用三维( 3D )打印的流体芯片制造技术近来受到广泛关注。在此,我们描述了一种利用3D打印的聚乙烯醇( PVA )或丙烯腈-丁二烯-苯乙烯( ABS )模板和聚合物涂层制备聚二甲基硅氧烷( PDMS )流体芯片的新方法。该方法在3D打印模板上涂复聚乙二醇( PEG )。将此涂层模板浸入液体PDMS中,随后将PDMS固化。通过从通道中移除这种液体PEG,可以在模板和PDMS之间创建空间。这个空间使模板的去除更容易。用溶剂溶解模板形成流路。这些PDMS芯片用于流动注射测量。

利用熔融沉积成型模板制备聚二甲基硅氧烷流控芯片,并应用于流动注射分析

ty10086 提交于 周四, 08/26/2021 - 13:01
采用三维( 3D )打印的流体芯片制造技术近来受到广泛关注。在此,我们描述了一种利用3D打印的聚乙烯醇( PVA )或丙烯腈-丁二烯-苯乙烯( ABS )模板和聚合物涂层制备聚二甲基硅氧烷( PDMS )流体芯片的新方法。该方法在3D打印模板上涂复聚乙二醇( PEG )。将此涂层模板浸入液体PDMS中,随后将PDMS固化。通过从通道中移除这种液体PEG,可以在模板和PDMS之间创建空间。这个空间使模板的去除更容易。用溶剂溶解模板形成流路。这些PDMS芯片用于流动注射测量。

一种基于电子器件的可植入液晶电池能量采集器( MEMS vs 3D打印制造)

ty10086 提交于 周四, 08/26/2021 - 13:01
本文报道了一种由PDMS (聚二甲基硅氧烷)微腔、金属电极、驻极体板组成的新型能量采集器装置液室单元。在微流体腔中,由于气-液界面介电常数的变化,K掺杂到氧化硅层中,形成驻极体中的固定电荷并极化产生电能。我们预见心跳作为外部振动源,将液体泵入液细胞单元中。可以产生电流给肌萎缩侧索硬化症的膈肌节拍器等小型植入式医用电子充电。

Method for preparing micro-nano-particle-reinforced PDMS-based FGM using 3D printing single nozzle

ty10086 提交于 周四, 08/26/2021 - 12:42
摘要\n采用3D打印技术制备了一种单喷嘴形成微纳粒子增强聚二甲基硅氧烷( PDMS )基功能梯度材料( FGM )。实验中选用SiC和SiO2颗粒作为增强相,制备了体积分数从0 %逐层增加到20 %的FGM。制备的FGM无孔隙,表现出良好的层间结合,且含有微纳米颗粒均匀地分布在层内而无团聚。SiC颗粒增强PDMS基FGM的力学性能和导热性能发生了逐层变化。当SiC颗粒体积分数达到20 %时,拉伸模量和硬度分别提高了83 %和36 %,热导率提高了21 %。与SiC颗粒增强PDMS基FGM相比,SiO2颗粒增强PDMS基FGM断裂后具有更低的逐层伸长率。上述材料的制备满足了柔性电子产品领域对基板材料的实际需求。在保持灵活性的同时,高增强颗粒含量可以充分为嵌入式电子设备提供保护或散热。