芯片

聚二甲基硅氧烷流体芯片的制备采用熔融沉积建模3D打印制作牺牲模板并应用于流动注射分析,原创论文

ty10086 提交于 周四, 08/26/2021 - 13:01
采用三维( 3D )打印的流体芯片制造技术近来受到广泛关注。在此,我们描述了一种利用3D打印的聚乙烯醇( PVA )或丙烯腈-丁二烯-苯乙烯( ABS )模板和聚合物涂层制备聚二甲基硅氧烷( PDMS )流体芯片的新方法。该方法在3D打印模板上涂复聚乙二醇( PEG )。将此涂层模板浸入液体PDMS中,随后将PDMS固化。通过从通道中移除这种液体PEG,可以在模板和PDMS之间创建空间。这个空间使模板的去除更容易。用溶剂溶解模板形成流路。这些PDMS芯片用于流动注射测量。

利用熔融沉积成型模板制备聚二甲基硅氧烷流控芯片,并应用于流动注射分析

ty10086 提交于 周四, 08/26/2021 - 13:01
采用三维( 3D )打印的流体芯片制造技术近来受到广泛关注。在此,我们描述了一种利用3D打印的聚乙烯醇( PVA )或丙烯腈-丁二烯-苯乙烯( ABS )模板和聚合物涂层制备聚二甲基硅氧烷( PDMS )流体芯片的新方法。该方法在3D打印模板上涂复聚乙二醇( PEG )。将此涂层模板浸入液体PDMS中,随后将PDMS固化。通过从通道中移除这种液体PEG,可以在模板和PDMS之间创建空间。这个空间使模板的去除更容易。用溶剂溶解模板形成流路。这些PDMS芯片用于流动注射测量。

基于纳米线环形谐振器嵌入柔性衬底的局部应变片

ty10086 提交于 周三, 08/25/2021 - 16:30
作者提出了一种基于Ⅱ - Ⅵ化合物组成的纳米线的柔性微谐振器,用于检测外界运动引起的微小应变。将纳米线环谐振器嵌入到聚二甲基硅氧烷( PDMS )柔性体中,以提高耦合效率。本工作将CdS纳米线制备在PDMS柔性衬底上。在纤维尖的帮助下,在显微镜下操纵单根纳米线,使弯折线成环形,使凋落物重叠。这种重叠提高了耦合效率和传感器性能。环形腔直径为1 µ m,长度为75 µ m,半径为α = 10 µ m。实验演示了制作应变传感器的过程,并检测出峰值位移。这种谐振波长在拉伸柔性衬底时出现红移和线性调谐。品质因数约为2000,规整因子约为每拉伸单元80nm。该传感器结构小、灵敏度高,可集成到芯片中。这在一定程度上促进了小型化的发展。因此,本工作有利于光学操纵,进一步推广到可调谐光源。

基于纳米线环形谐振器嵌入柔性衬底的局部应变片

ty10086 提交于 周三, 08/25/2021 - 16:30
作者提出了一种基于Ⅱ - Ⅵ化合物组成的纳米线的柔性微谐振器,用于检测外界运动引起的微小应变。将纳米线环谐振器嵌入到聚二甲基硅氧烷( PDMS )柔性体中,以提高耦合效率。本工作将CdS纳米线制备在PDMS柔性衬底上。在纤维尖的帮助下,在显微镜下操纵单根纳米线,使弯折线成环形,使凋落物重叠。这种重叠提高了耦合效率和传感器性能。环形腔有直径1µm、长度75µm、半径10µm的参数。实验演示了制作应变传感器的过程,并检测出峰值位移。这种谐振波长在柔性基底拉伸时出现红移和线性调谐。品质因数约为2000,规整因子约为每拉伸单元80 nm。该传感器结构小、灵敏度高,可集成到芯片中。这在一定程度上促进了小型化的发展。因此,本工作有利于光学操纵,进一步推广到可调谐光源。