NPs

癌症理论磁响应器件的设计与工程:从纳米到宏观

ty10086 提交于 周三, 08/25/2021 - 16:24
设计、研究和开发新型和改进的智能多功能器件是未来十年先进功能材料议程的主要议题之一。可以被外界刺激触发的智能材料被FDA、EMA等监管机构看到,具有很高的创新治疗和改进药物传递系统的潜力。将磁性纳米结构引入到复杂体系中,可以产生多功能的器件,并且可以通过外加磁场进行时空调控。这些磁响应器件可以用于从诊断到治疗肿瘤等多种生物医学应用,并正在积极开发和测试用于癌症治疗。在此,我们从最简单的结构——单一纳米粒子出发,综述了肿瘤磁响应器件的发展。我们在对此类系统的设计和制作给出一些理论概念的同时,对其在临床实践中的应用进行了批判性的综述。自然而然,该综述发展到更复杂的结构,从一维磁响应系统发展到三维磁响应系统,显示出更高的复杂性和多功能性,因此对临床实践的兴趣更高。审查的结尾是癌症理论磁响应器件的设计和工程面临的主要挑战以及这一生物医学领域的未来趋势。

标签

电泳辅助聚集导电纳米颗粒,用于增强细胞电渗透

ty10086 提交于 周三, 08/25/2021 - 16:24
先前提出利用导电纳米粒子( conductive nanoparticles,NPs )局部放大细胞膜电场( electric field,EF )强度来增强细胞电穿孔。为了实现这一点,纳米颗粒与细胞膜之间的距离是必须的。这里,探索了利用电脉冲(电泳力)的作用来改善NPs与细胞表面接触的新方法。分析了两种电脉冲单独或联合应用对中国仓鼠DC - 3F细胞的影响。特别地,我们使用了100个 µs的持续时间脉冲,低强度毫秒脉冲以及两者的组合。最后,我们研究了利用表面包复的NPs ( PEG化)进行这种应用。我们的结果表明,电穿孔脉冲前电场的传递增加了NP在细胞膜周围的积累,提示NP通过电泳力推向细胞表面。这样可以减少细胞与NPs长时间孵育的需要,观察到导电NPs介导的电穿孔增强。因此,低强度毫秒脉冲可以用来增加聚集态或个体(即PEG化) NPs的积累,支持观察效应的电泳性质。