微通道

Microchannel-based regenerative scaffold for chronic peripheral nerve interfacing in amputees

ty10086 提交于 周四, 08/26/2021 - 13:31
Abstract(#br)Neurally controlled prosthetics that cosmetically and functionally mimic amputated limbs remain a clinical need because state of the art neural prosthetics only provide a fraction of a natural limb's functionality. Here, we report on the fabrication and capability of polydimethylsiloxane (PDMS) and epoxy-based SU-8 photoresist microchannel scaffolds to serve as viable constructs for peripheral nerve interfacing through in vitro and in vivo studies in a sciatic nerve amputee model where the nerve lacks distal reinnervation targets.

マイクロ円柱パターンの隙間によるがん細胞の捕捉

ty10086 提交于 周四, 08/26/2021 - 13:00
Separation technique of the circulating tumor cell (CTC), which would be a sample for diagnostics of cancer, is important. In the present study, a micro flow device, which has gaps between micro-cylinders, has been fabricated by photolithography technique to distinguish between cancer cells and red blood cells. Two kinds of cells were used in the test: Hepa1-6 and swine red blood cell. The mean diameters of two kinds of cells measured by ImageJ were 21 μm and 6 μm. Variation was made on the dimension of the gap: 10, 15, 20 and 25 μm.

体内インプラント医療器具を想定した流体振動型エナジー・ハーベスタ

ty10086 提交于 周四, 08/26/2021 - 13:00
In this paper, we report on a proof-of-concept level energy harvester device that could earn electric power of 0.093 µW/cm by the fluidic motion in a PDMS (polydimethylsiloxane) micro fluidic channel placed on a silicon substrate with built-in permanent electrical charges or so-called electrets. Targeting implantable medical devices such as respiratory pace-maker, the heart beat or aspiration is thought to be the source of motion as a final shape of the energy harvesting system.

Effects of External Voltages and Widths on Fluid Velocity in Microchannel

ty10086 提交于 周四, 08/26/2021 - 12:49
Effects of External Voltages and Widths on Fluid Velocity in Microchannelmicrochannel;microfluidics;PDMS;soft lithography;electrical double layer;In this work, Polydimethylsiloxane (PDMS) and SU-8 (Microchem, USA) photoresist were used to make the microchannel by soft lithographic method. To investigate the effects of external voltages and widths of the microchannel, we made the microchannel by soft lithographic method. To investigate the effects of external voltages and widths of the microchannel, we made the microchannel with various widths: $100{\\mu}m,\\;200{\\mu}m$ and $300{\\mu}m$.

聚合物微通道和微模表面抛光用于快速、低量聚二甲基硅氧烷和热塑性微流控器件的制造

ty10086 提交于 周三, 08/25/2021 - 16:41
聚合物基微模塑已被提出作为微流控芯片制造的替代SU-8微模塑。然而,铣痕等表面缺陷可能导致微通道和微模具粗糙,限制了微流控器件的性能。因此,我们采用化学和机械方法对聚合物微通道和微模具进行抛光。此外,我们还从去除聚合物微通道和微模具表面的加工(铣削)痕迹方面评价了它们的性能。对于化学抛光,我们使用溶剂蒸发来抛光样品表面。对于机械抛光,采用带有磨料的毛毡抛光钻头对试样表面进行抛光。化学抛光使表面粗糙度由蒸发时间6 min后的0.38μm ( 0 min,铣削后)降低到0.13μm。机械抛光使表面粗糙度从0.38 μ m降低到0.165 μ m (最佳压制长度为0.3 mm )。由于抛光会造成磨损,我们评估了抛光后试样的几何损失。机械抛光和化学抛光微模具的微模具畸变率最优分别为1.01 % ±0.76 %和1.10 % ±0.80 %。与化学抛光相比,机械抛光由于采用计算机数控( CNC )铣床进行局部抛光,可以更好地保持几何完整性。利用这些具有优化参数的表面抛光方法,可快速生产用于聚二甲基硅氧烷( PDMS )浇铸和热塑性热模压的聚合物微模具和微通道。此外,本文还演示了低量( 15倍)聚合物微通道复制。

聚合物微通道和微模表面抛光用于快速、低量聚二甲基硅氧烷和热塑性微流控器件的制造。

ty10086 提交于 周三, 08/25/2021 - 16:41
聚合物基微模压已被提出作为微流控芯片制造用SU-8微模压的替代方案。然而,铣痕等表面缺陷可能导致微通道和微模具粗糙,限制了微流控器件的性能。因此,我们采用化学和机械方法对聚合物微通道和微模具进行抛光。此外,我们还从去除聚合物微通道和微模具表面的加工(铣削)痕迹方面评价了它们的性能。对于化学抛光,我们使用溶剂蒸发来抛光样品表面。对于机械抛光,采用带有磨料的羊毛毡抛光钻头对试样表面进行抛光。化学抛光6 min后,表面粗糙度由0.38μm (铣削后0 min )降低到0.13μm。机械抛光使表面粗糙度从0.38降低到0.165μm (最佳压制长度:0.3 mm )。由于抛光引起磨损,我们对抛光后试样几何损失进行了评价。机械抛光和化学抛光微模具的最佳微模具畸变率分别为1.01 % ±0.76 %和1.10 % ±0.80 %。与化学抛光相比,机械抛光由于采用计算机数控( CNC )磨床进行局部抛光,可以更好地保持几何完整性。利用这些优化参数的表面抛光方法,可以快速生产聚合物微模具和微通道,用于聚二甲基硅氧烷( PDMS )的铸造和热塑性热压印。此外,本文还演示了低量( 15倍)聚合物微通道复制。