液滴生成

利用多分支通道诱导的尾巴破碎高效生成微滴

ty10086 提交于 周三, 08/25/2021 - 15:42
近年来,微滴在生物技术和化学领域的应用研究取得了显著进展,但单微米尺度微滴稳定生成技术尚未建立。在本文中,我们开发了一种高效、稳定的基于液滴尾部破碎的单微米尺度液滴生成装置,称为“尾线模式”,它出现在中等流量条件下。这种方法可以高效地将模拟细胞和化工产品的微珠封装在被动生成的单微米级微滴中。该装置具有简单的二维结构,一个T型结用于液滴生成,在下游设计多分支通道,用于液滴变形进入尾部。尾巴破碎成功地产生了1 ~ 2个µ m液滴,这种连续分裂是由分支通道诱导的。我们考察了多种实验条件,发现与传统的叶顶流方法相比,最佳流速条件可以降低到十分之一。采用简单的软光刻技术制作了模具,并利用该模具制作了聚二甲基硅氧烷( PDMS )器件。综合15种模式的实验条件和结果,考察了该装置中微滴产生的关键因素。在最高效的条件下,生成的总液滴中61.1 %小于2μm。

利用多分支通道诱导的尾裂高效生成微液滴。

ty10086 提交于 周三, 08/25/2021 - 15:41
近年来,微滴在生物技术和化学领域的应用研究取得了显著进展,但单微米尺度微滴稳定生成技术尚未建立。在本文中,我们开发了一种高效、稳定的基于液滴尾部破碎的单微米尺度液滴生成装置,称为“尾线模式”,它出现在中等流量条件下。这种方法可以高效地将模拟细胞和化工产品的微珠封装在被动生成的单微米级微滴中。该装置具有简单的二维结构;a T型接头用于产生液滴;在下游,多分支通道被设计用于液滴变形进入尾部。通过尾部破碎,成功制备了1 ~ 2个µ m液滴;这种持续分裂是由分支通道诱导的。我们考察了多种实验条件,发现与传统的叶顶流方法相比,最佳流速条件可以降低到十分之一。采用简单的软光刻技术制作了模具,并利用该模具制作了聚二甲基硅氧烷( PDMS )器件。综合15种模式的实验条件和结果,考察了该装置中微滴产生的关键因素。在最高效的条件下,生成的总液滴中61.1 %小于2μm。