人类多能干细胞

Engineered Kidney Tubules for Modeling Patient-Specific Diseases and Drug Discovery

ty10086 提交于 周四, 08/26/2021 - 13:17
Abstract(#br)The lack of engineering systems able to faithfully reproduce complex kidney structures in vitro has made it difficult to efficiently model kidney diseases and development . Using polydimethylsiloxane (PDMS) scaffolds and a kidney-derived cell line we developed a system to rapidly engineer custom-made 3D tubules with typical renal epithelial properties. This system was successfully employed to engineer patient-specific tubules, to model polycystic kidney disease (PKD) and test drug efficacy, and to identify a potential new pharmacological treatment.

Optimised PDMS Tunnel Devices on MEAs Increase the Probability of Detecting Electrical Activity from Human Stem Cell-Derived Neuronal Networks

ty10086 提交于 周四, 08/26/2021 - 13:07
Measurement of the activity of human pluripotent stem cell (hPSC)-derived neuronal networks with microelectrode arrays (MEAs) plays an important role in functional in vitro brain modelling and in neurotoxicological screening. The previously reported hPSC-derived neuronal networks do not, however, exhibit repeatable, stable functional network characteristics similar to rodent cortical cultures, making the interpretation of results difficult. In earlier studies, microtunnels have been used both to control and guide cell growth and amplify the axonal signals of rodent neurons.

人偶氮苯材料的微流控装置中人神经元轴子的定向生长

ty10086 提交于 周三, 08/25/2021 - 16:13
轴索功能障碍和变性是中枢神经系统疾病和创伤的重要病理特征,如阿尔茨海默病、创伤性脑损伤、缺血性脑卒中和脊髓损伤等。工程化的微流控芯片结合人多能干细胞( hPSC )衍生的神经元,为轴突的靶向体外研究提供了有价值的工具,以提高对疾病机制的认识,促进药物开发。这里,采用集成光模化基底的聚二甲基硅氧烷( PDMS )微流控芯片,实现hPSC衍生神经元的分离和单向轴突生长。通过优化PDMS微通道在微流控装置中的截面积和长度,实现了轴突与胞体和树突的分离,并使轴突生长健壮到相邻的轴突室。在轴突室,含偶氮苯分子玻璃薄膜上的光刻纳米形貌有效地引导轴突的生长。将纳米拓扑结构与微流控芯片相结合,构建了一个支持孤立微环境下优越轴突排列的人神经元模型。下面通过研究氧葡萄糖剥夺对离体和定向轴突的损伤来说明芯片的实用性。所建立的芯片模型代表了一个成熟的平台和一个新的工具,用于增强和长期靶向轴突的体外研究。

基于环烯烃聚合物的无溶剂大批量生产微生理系统。

ty10086 提交于 周三, 08/25/2021 - 16:03
一个微生理系统( MPS )作为动物模型的替代品,在药物筛选和毒理学检测方面有着巨大的前景。然而,该平台在使用的材料方面面临一些挑战(例如聚二甲基硅氧烷、PDMS )。例如,药物候选物和荧光染料在PDMS中的吸附以及材料对培养细胞的影响,都会导致细胞检测结果的不准确或误导。PDMS的使用也对制造MPS的批量生产和长期储存提出了挑战。因此,为了规避这些问题,本文描述了利用光键合工艺和真空紫外( VUV )开发一种基于环烯烃聚合物( COP )的MPS,称为COP-VUV- MPS。COP是一种无定形聚合物,具有化学/物理稳定性、高纯度和光学清晰度。由于金属模压工艺具有良好的热稳定性和高模量的COP,可以在不变形微结构的前提下,快速制备周期(约10 min / cycle )的MPSs;此外,采用准分子光在172 nm波长下的VUV光键合工艺可以在不使用额外溶剂和胶带的情况下组装COP材料,从而导致电池的损伤。与PDMS制成的常规MPS ( PDMS- MPS )相比,COP-VUV- MPS在不引起分子吸收的情况下表现出了更高的耐化学性质。此外,COP-VUV- MPS维持了对环境敏感的人类诱导多能干细胞的干性,而不会引起不希望的细胞表型或基因表达。这些结果表明COP-VUV- MPS可能广泛适用于MPS的进展和在药物开发中的应用,以及体外毒理学检测。