高灵敏度宽线性响应压力传感器在弯曲条件下具有零备用功耗。

ty10086 提交于 周三, 08/25/2021 - 17:20
文章英文标题
Highly Sensitive and Wide Linear-Response Pressure Sensors Featuring Zero Standby Power Consumption under Bending Conditions.
文章内容(英文)
The ability of a flexible pressure sensor to possess zero power consumption in standby mode, high sensitivity, and wide linear-response range is critical in real flexible matrix-based scenes. However, when the conventional flexible pressure sensors are attached on a curved surface, a pseudosignal response is generated because of the normal stress, resulting in a short linear-response range. Here, a flexible piezoresistive pressure sensor with high performance, zero standby power consumption is demonstrated. The flexible pressure sensor is fabricated from polydimethylsiloxane (PDMS)/carbon black (CB), patterned polyimide (PI) spacer layer, and laser-induced graphene (LIG) interdigital electrodes. Benefiting from the hierarchical structure and sufficient roughness of PDMS/CB and LIG interdigital electrodes, the proposed pressure sensors (PDMS/CB/PI/LIG) exhibit high sensitivity (43 kPa\u003csup\u003e-1\u003c/sup\u003e), large linear-response range (0.4-13.6 kPa), fast response (\u003c40 ms), and long-term cycle stability (\u003e1800 cycles). The resulting pressure sensor also features zero standby power consumption merit under certain bending conditions (bending angle: 0-5\u003csup\u003eo\u003c/sup\u003e). Furthermore, the effect of the hole diameter of the PI spacer layer on the performance of the pressure sensors is experimentally and theoretically investigated. As a proof of concept, a bioinspired artificial haptic neuron system has been successfully equipped to modulate the number of lit LED lights. The proposed high-performance pressure sensor has promising potential to be used in flexible and wearable electronics, especially for the applications in actual flexible matrix-based scenes., People's Republic of China.;;Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.;;Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China.;;Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.;;Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China.;;Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.;;Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China.;;Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.;;Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China.;;Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.;;Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China.;;Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.;;School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.;;School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.;;Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.;;Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.
来源出处
Journal|[J]ACS Applied Materials & InterfacesVolume 12, Issue 17. 2020. PP 19563-19571
DOI
https://doi.org/10.1021/acsami.0c02774

PDMS臻品推荐

PDMS-微流控基质材料-PDMS/道康宁SYLGARD184-聚二甲基硅氧烷/0.5KG(组)

产品说明书PDF自助在线看:http://www.pdmshub.com/sih

信息更新:

美国总工厂生产的0.5KG原始包装的PDMS延期至2021年9月16日后才能交货,默认我们将发国内库存的进口分装产品(02085925-0.5KG);另受制于有机硅大幅涨价潮影响,2021年9月1日后将上调销售价格,另行通知。Dow Corning=道康宁=Dow SiL=陶氏,都是同一家公司。 2021.09.01更新

美国总工厂生产的0.5KG包装的PDMS恢复正常进口,合法正规,质量金标准,欢迎订购使用。并承诺从我司购买的皆为原厂包装,100%未开封,附带技术手册,非国产灌装仿制、非分装、非仿冒外包装产品,可以放心使用。大量订购更有优惠。2021.04.01更新

备注:由于dowsil与道康宁公司合并,美国总工厂生产的PDMS,价格涨幅高达1倍之多,因针对科研用户使用,特备货规格0.5KG。如果您需要美国总工厂原厂生产的大规格包装的预定,可以与QQ 11366508联系给予报价/货期。2021.05更新

此链接为PDMS-微流控芯片/PDMS/道康宁SYLGARD184/小桶0.5KG装的链接。

一般性的产品性能参数表参考以下小桶装的参数:

微流控芯片/PDMS/道康宁SYLGARD184;微流控芯片/PDMS/道康宁SYLGARD184;微流控芯片/PDMS/道康宁SYLGARD184;

品牌型号:道康宁SYLGARD184

包装规格:0.5KG/罐[含有45.4g固化剂,总重量为0.5KG]

产品颜色:保质期限:36个月

存放环境说明:室温,阴凉处保存

备注说明:

美国道康宁道康宁SYLGARD 184硅橡胶是由液体组分组成的双组分套件产品,包括基本组分与固化剂。基本组分与固化剂按10:1重量比完全混合,中等粘度混合液的稠度与SAE 40机油相似。无论厚薄,混合液将固化成为具有韧性的透明弹性体,最适用于电子/电气方面的封装与灌封应用。 道康宁SYLGARD 184硅橡胶在25~150℃的温度范围内固化,无放热现象,无需二次固化。固化过程完成后,可立即在-55~200℃的温度范围内使用。 产品特性:低毒性,在常规的工业操作中,无特别的注意事项; 无溶剂或固化副产物, 固化时不放热;无需特殊的通风条件,不会产生腐蚀;固化时,收缩量小; 固化后, 透明具有弹性;抗震与减缓机械震动;振动的传递性能小;元件可裸视检查与易修补性; 环保性能;低吸水性,良好的耐辐射性能;高真空状态下的低漏气性; 优异的电性能;较大温度范围内的稳定性, 抗解聚;在-55~200℃范围内,甚至在密闭状态下保持弹性与柔韧性,性能稳定; 阻燃性,UL可燃性分级为94 V-1,温度等级:130℃ 产品用途: 道康宁SYLGARD 184硅橡胶在电气/电子的封装与灌封方面有广泛的应用。